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1. Introduction

In this paper, we study T-folds and their T-dual backgrounds [1]–[9]. T-folds provide

generalizations of manifolds. They consist of patches that can be glued not only by dif-

feomorphisms, but also by other symmetries of string theory, in particular elements of

the T-duality (or of the U-duality) group. These generalizations of manifolds may allow

us to considerably enlarge the set of vacua in string theory. In particular they may find

applications in string theory cosmology (see e.g. [10]) and string phenomenology. See e.g.

the references [11]–[20] for interesting studies of the topology and geometric structure of

T-folds, as well as their behaviour under T-duality.

In the present paper, we firstly wish to study a simple class of T-folds in which we

control fully the backreacted geometry. Our first class of T-folds will be T-dual to known

supergravity solutions, which will allow us to determine the fully backreacted T-fold. The

geometry will lay bare further interesting properties of T-folds as well as some subtleties

associated to their existence.
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Moreover, we study how the T-duality map acts on various observables in the theory,

from an original geometric background to its twisted torus T-dual as well as to the dou-

bly T-dual T-fold. These observables will include charge, Wilson surfaces, monodromies

and curvature.

We analyze in more detail when T-folds cannot be put into geometric form under

any T-duality transformation. That is important, since otherwise, after dividing out

the gauge group in second quantized string theory, it would suffice to integrate over

geometric backgrounds.

We then continue to analyze solutions of string theory that are T-folds, and al-

low for moduli varying in space. In that way we can construct a new non-trivial ex-

ample which solves the supergravity equations of motion and which is a T-fold with

hyperbolic monodromies.

2. The supergravity backreaction

One way to construct a T-fold is to start out with a space-time which is a manifold with a

three-torus factor T 3 and with constant NSNS three-form flux H(3) on the three-torus. To

obtain a T-fold one applies T-duality along two isometry directions of the three-torus [5].

One exchanges a geometric background for a non-geometric one. While this T-fold does

not extend the space of inequivalent string theory vacua, the construction is useful to get to

grips with the non-geometry of T-folds, and the associated observables. The hope is that

the lessons we learn can be applied to T-folds (or U-folds) with no geometric equivalent.

We will study this well-known example, include its backreaction in our study, comment on

its microscopic origin, provide new observables that are non-trivial after backreaction and

study a subtlety associated to Wilson surfaces.

In this section, we concentrate on the backreaction in this T-fold background as well

as some closely related ones, in a geometric, twisted torus and T-fold duality frame.

The supergravity equations. We want to embed a three-torus factor with constant

NSNS three-form H(3) into a full string theory background, and extend the example to

other backgrounds with purely NSNS flux. Since the three-form field strength provides

for a non-trivial energy density on the three-torus, we will need to take into account its

backreaction in order to satisfy the equations of motion of string theory which reduce to

the supergravity equations at first order in the string coupling, and at weak curvature.

Since we have a non-trivial magnetic NSNS three-form flux, the solution carries NS5-brane

charge, and we will therefore take a minimal approach of constructing it using smeared

NS5-branes [21] only. There are alternative embeddings that turn on RR-fluxes [22].

It is known (see e.g. [23]) that the following background solves the supergravity equa-

tions of motion (universally for type II, type I and heterotic supergravities):

ds2 = ds2
R5,1 + h

(

(

dx6
)2

+
(

dx7
)2

+
(

dx8
)2

+
(

dx9
)2
)

,

e2φ = he2φ0 ,

H(3) = ∗dh , (2.1)
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where the function h is harmonic and the hodge star operator acts on the four-dimensional

transverse space parameterized by the coordinates x6,7,8,9. More precisely the function h

is harmonic up to a source term which is provided by the positions of NS5-branes that

stretch along the six-dimensional space R
5,1. To generate a three-torus, we compactify the

directions x7, x8, x9. The direction parameterized by x6 is the only non-compact direction

orthogonal to the NS5-branes. Thus the function h will be a harmonic function on R×T 3.

Our plan is to perform two T-duality transformations along two isometry directions

of the original background to generate a T-fold [5]. To generate isometries, we study

configurations of NS5-branes that are smeared along a two-torus T 2 inside the transverse

space R × T 3. We choose the directions of the two-torus to be parameterized by x8 and

x9. The harmonic function will be constant along these directions. It can depend on the

coordinates x6, x7. We thus extend the set of examples to include cases with varying flux.

In the course of the next sections, we will study various configurations with the above

properties and it will be convenient to treat them all at once. Below we study the super-

gravity equations of motion in such backgrounds, including their source terms, since it will

provide us with a handle on what happens to the sources after T-duality. That will give

an indication of the microscopic origin of T-folds.

The supergravity equations of motion become:

RAA − 1

4
HAρσHA

ρσ + 2∇A∇Aφ = −∆h

2h
for A = x6, x7, x8, x9 ,

Rµν − 1

4
HµρσHν

ρσ + 2∇µ∇νφ = 0 otherwise ,

4(∇φ)2 − 4�φ − R +
1

12
H2 =

∆h

h2
,

dH(3) = d ∗ dh = ∆h dx6 ∧ dx7 ∧ dx8 ∧ dx9 . (2.2)

Let’s recall the sources we should associate to the original geometric background. A source

term proportional to the transverse Laplacian ∆ of the function h appears at the position

of the NS5-branes. It codes the mass of the NS5-branes as well as their magnetic charge

under the NSNS three-form flux. One concrete way to measure the geometric backreaction

on the space due to the presence of the massive NS5-branes is through the non-trivial scalar

curvature (which is a gauge invariant observable on manifolds):

R =
3

2h3

(

(∂6h)2 + (∂7h)2
)

− 3∆h

h2
. (2.3)

We turn to the T-dual backgrounds.

The T-dual twisted torus. To analyze the microscopic origin of the backreacted twisted

torus we compute the source term after one T-duality transformation. After performing a

T-duality transformation [24, 25] along the direction parameterized by the coordinate x8,

we obtain a background where the embedded T 3 has the topology of a twisted torus [3, 5]:

ds2 = ds2
R5,1 + h

(

(

dx6
)2

+
(

dx7
)2

+
1

h2

(

dx8 − bdx9
)2

+
(

dx9
)2
)

,

e2φ = e2φ0 ,

B(2) = 0 . (2.4)
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The value of the NSNS two-form potential B(2) along the isometry directions in the original

background is denoted by b, and we have chosen the other components to be zero.1 The

T-duality transformation exchanges the complex structure modulus τ of the two-torus in

the x8, x9 directions T 2
89 with its Kähler modulus ρ =

∫

T 2
89

B89 + iVT 2
89

. Since we chose the

torus to be rectangular, the dual B-field is zero. Since in the dual background the NSNS

three-form flux H(3) field vanishes and the dilaton is constant, the supergravity equations

of motion in the twisted torus background reduce to equations for the Ricci curvature:

RAA = −∆h

h
for A = x6, x7 ,

R88 = −∆h

2h3
, R99 = −(b2 − h2)∆h

2h3
,

R89 = −b∆h

2h3
, Rµν = 0 otherwise . (2.5)

and

R = −∆h

h2
. (2.6)

Again we can identify the source terms, which are now purely geometric singularities. We

will discuss them further later on on a case-by-case basis.

The doubly T-dual T-fold. To generate a backreacted T-fold, we perform a second T-

duality transformation along the x9-direction and obtain expressions for the metric, dilaton

and B-field:

ds2 = ds2
R5,1 + h

(

(

dx6
)2

+
(

dx7
)2

+
1

b2 + h2

(

(

dx8
)2

+
(

dx9
)2
)

)

,

e2φ =
he2φ0

b2 + h2
,

B(2) = − b

b2 + h2
dx8 ∧ dx9 . (2.7)

The local equations of motion in the T-fold background become

RAA − 1

4
HAρσHA

ρσ + 2∇A∇Aφ = −∆h

2h
for A = x6, x7 ,

RAA − 1

4
HAρσHA

ρσ + 2∇A∇Aφ = − b2 − h2

(b2 + h2)2
∆h

2h
for A = x8, x9 ,

Rµν − 1

4
HµρσHν

ρσ + 2∇µ∇νφ = 0 otherwise (2.8)

and

4(∇φ)2 − 4�φ − R +
1

12
H2 =

∆h

h2
. (2.9)

The scalar curvature associated to the metric is:

R =
3

2h3

(

(∂6h)2 + (∂7h)2
)

+
h2 − 3b2

(b2 + h2)

∆h

h2
. (2.10)

1We will come back to this choice of Wilson surfaces later.
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In the following section, we apply the above set of formulas that specify the backgrounds

T-dual to purely NSNS backgrounds. We recall that in the geometric setting, we have

parallel NS5-branes distributed evenly over a two-torus at least.

3. The backreaction and observables: examples

We turn to concrete examples of NS5-brane backgrounds and their T-duals to which we

apply the above formalism. The examples we study include the original example of the

constant magnetic three-form flux. We generalize it to include non-trivial values for B-field

Wilson lines (or Wilson surfaces), and we extend it to an example in which we have a

magnetic flux that is uniform only in two directions, and localized in a third. We examine

the domain of validity, the observables and the microscopics of T-folds.

3.1 Example 1: a uniform flux

If we spread the NS5-branes uniformly over the three-torus parameterized by x7,8,9, then

we generate a uniform magnetic NSNS three-form flux on the three-torus. If we smear

the charge equivalent of N NS5-branes on the three-torus residing at x6 = 0, then the

harmonic function is (up to a constant, see e.g. [26]):

h =
1

2
N
(

x6 + |x6|
)

+ c , (3.1)

with first and second derivatives given by

∂6h = NΘ(x6) , ∂2
6h = Nδ(x6) . (3.2)

By spreading a six-dimensional object over three transverse directions in ten-dimensional

space-time we have created a domain wall at x6 = 0. On either side of the domain wall,

the topology of the ten-dimensional space is given by six-dimensional Minkowski space

times a three-torus T 3. We have taken the three-torus to have fixed volume c3/2 on the

left (for x6 < 0), and to the right the volume of the T 3 evolves along the positive x6-axis:

VT 3 =
(

Nx6 + c
)3/2

.

The scalar curvature (see equation (2.3)) is:

R =
12N2Θ(x6)

(Nx6 + N |x6| + 2c)3
− 3N

c2
δ(x6) . (3.3)

Remarks. The space-time is not asymptotically flat. It behaves much like a pure D8-

brane background in type IIA string theory. In that case, it is known that one can obtain

a space T-dual to an asymptotically flat space by including two O8− planes at the end

of space-time, to create a configuration (type I’) that is T-dual to type I string theory.

To stabilize our three-torus at both infinities (on the line transverse to the domain wall)

and to obtain an asymptotically flat space-time, we need to include orientifold objects

with negative tension and NSNS magnetic charge. We have no microscopic description of

these objects yet although they have been argued to exist (by using the fact that certain

string theory backgrounds should consistently describe the physics of supersymmetric gauge
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Figure 1: At the location of NS5-branes spread on a three-torus, the evolution of the volume of

the three-torus in the transverse direction changes.

theories) (see e.g. [27]). We can think of our background as being valid locally, near a given

domain wall.

Secondly, we must check the domain of validity of our supergravity solution, as well as

the domain in space-time in which the string coupling is small, such that our perturbative

solution (in both the string coupling and the string length over the curvature radius) is

valid. It is clear from the supergravity solution that with an appropriate choice of the

constant c, and when restricting to a particular domain in x6, the supergravity solution

will be valid.

Both these points illustrate the fact that it is important to demonstrate that a given

T-fold survives when backreaction is taken into account, namely, as a full solution to weakly

curved perturbative string theory (or beyond). From the above arguments, we decide that

the standard three-form flux case (without adding RR-fluxes) is a borderline case in the

sense that it is hard to embed it in asymptotically flat string theory.

The uniform twisted torus. We choose the NSNS two-form B(2) to be:

B(2) = Nx7Θ
(

x6
)

dx8 ∧ dx9, (3.4)

and perform the T-duality transformation in the x8-direction to get the uniform twisted

torus [3]:

ds2 = ds2
R5,1 + h

(

(

dx6
)2

+
(

dx7
)2

+
1

h2

(

dx8 − NΘ(x6)x7dx9
)2

+
(

dx9
)2
)

,

e2φ = e2φ0 ,

B(2) = 0 . (3.5)

After T-duality in a direction transverse to the NS5-branes, the NS5-brane charge disap-

pears from the background. The space is flat except at the point x6 = 0 where we have a

curvature singularity as can be checked by computing:

R = −h′′

h2
= −N

c2
δ(x6) = −Nδ(x6)

det g
, (3.6)
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where g is 10-dimensional metric. The microscopic description available for the singularity

is that it is T-dual to the NS5-branes we started out with. That is sufficient to interpret the

backreacted twisted torus as giving rise to a type of curvature singularity that is resolved

by string theory. Let’s describe it in an alternative fashion.

The monodromy domain wall. The presence of the domain wall at the point x6 = 0

can also be measured in another way. At the domain wall, there is a change in monodromy

of the twisted torus [3]. In other words, we have a monodromy domain wall. Measuring the

difference of the monodromy on either side of the domain wall is a geometric equivalent of

the measurement of the difference in the flux through the three-torus on either side of the

NS5-brane in the original background. Let’s demonstrate this in detail.

It is sufficient to consider the transverse space spanned by the coordinates x6,7,8,9. For

x6 < 0 there is no monodromy in the three-torus fiber as we go around the x7 cycle. On

the other side of the domain wall, for x6 > 0, we find a monodromy as we go around the

x7 cycle given by






1 0 0

0 1 −N

0 0 1






. (3.7)

The monodromy matrix has a non-trivial action only on the two-torus x8,9 and as such it

is an element of SL(2, Z). It is a parabolic element, which is already in the canonical upper

diagonal form (which is unique), and we can therefore uniquely associate the number N to

our twisted torus. The charge of the monodromy domain wall is N . More generically, if

we allow twisted tori with parabolic monodromies on either side of the domain wall, then

the charge of the monodromy domain wall is given by the difference in the numbers NL

and NR associated to the parabolic monodromies to the left and the right of the domain

wall. Thus we see that the backreacted twisted torus codes the charge of the microscopic

object in a geometric fashion.

It could be interesting to consider twisted tori with other types of monodromies, and

to analyze the properties of the monodromy domain walls between them.

The uniform T-fold. After performing a second T-duality along the x9-direction we

obtain the T-fold:

ds2 = ds2
R5,1 + h

(

(

dx6
)2

+
(

dx7
)2

+

(

dx8
)2

+
(

dx9
)2

h2 + (Nx7Θ (x6))2

)

,

e2φ =
he2φ0

h2 + (Nx7Θ (x6))2
,

B(2) = − Nx7

h2 + (Nx7Θ (x6))2
dx8 ∧ dx9. (3.8)

The covering space of the three-torus is no longer invariant under translations in the x7-

direction. The curvature has also lost its status of gauge invariant observable — it is no

– 7 –
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longer well-defined on the torus:

R =
12N2Θ(x6)

(Nx6 + N |x6| + 2c)3
+

N

c2

(

1 − 4

(

Nx7
)2

c2 + (Nx7)2

)

δ
(

x6
)

. (3.9)

We note in particular that the curvature depends explicitly on the periodic coordinate x7.

Despite the fact that the flux was uniformly spread on the three-torus (in the directions

x7,8,9, we have a non-trivial dependence on the x7 coordinate only. Let’s see in a little

more detail how this came about.

3.2 A note on Wilson surfaces

In the original geometric background, we can measure the gauge invariant observables:

Wkl = e
2πi

R

Tkl
B

, (3.10)

where k, l range over the coordinates of the three-torus x7,8,9. These are well-defined for

a gerbe (see e.g. [28]), since the two-form B(2) is shifted by the curvature of a line bundle

under a gauge transformation.

A first application of the fact that these Wilson surfaces are gauge invariant is that

two-forms B of the form:

B1
(2) = Nx7dx8 ∧ dx9 ,

B2
(2) = Nx8dx9 ∧ dx7 (3.11)

are gauge equivalent on R
3 (where there are no non-trivial compact two-cycles), but they

are inequivalent on the three-torus. In particular, we can measure the Wilson surfaces

along two out of the three directions x7,8,9 and we find that these take different values

for the two choices of B(2) field, thus proving the inequivalence of the backgrounds. In

particular, only the first choice of two-form is consistent with the demand that all gauge

invariant observables be invariant under translations in the x8,9 directions. This observation

explains why the doubly T-dual T-fold depends on the x7 direction, and not on the true

isometric directions x8,9.

A further use of these Wilson surface observables is as follows. We can add the following

constant two-forms to the B-field:

Bextra
(2) = b8 dx9 ∧ dx7 + b9 dx7 ∧ dx8, (3.12)

since they do not carry extra energy. Since we can measure the constants b8,9 (modulo

an integer), these backgrounds with non-trivial surface holonomies are inequivalent to the

background we studied before. After T-duality, they generate new twisted tori and T-fold

backgrounds. It is straightforward to apply the Buscher rules to obtain explicit formulas

for the metric, dilaton and NSNS two-form in these backgrounds.

To make that point more concrete, we believe it is sufficient to study the standard

T-fold case without backreaction:

ds2 = (dx7)2 + (dx8)2 + (dx9)2 ,

B(2) = Nx7dx8 ∧ dx9 + Bextra
(2) . (3.13)

– 8 –
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After a T-duality transformation along x8 the metric and two-form become

ds2 =
(

1 + b2
9

)

(dx7)2 + (dx8 − Nx7dx9)(b9dx7 + dx8 − Nx7dx9) + (dx9)2 ,

B(2) = b8dx9 ∧ dx7, (3.14)

and after an additional T-duality along x9

ds2 = (dx7)2 +
1

1 + (Nx7)2

(

(

dx9 − b8dx7
)2

+
(

dx8 + b9dx7
)2
)

,

B(2) =
Nx7

1 + (Nx7)2
(

−dx8 ∧ dx9 + b9dx9 ∧ dx7 − b8dx7 ∧ dx8
)

. (3.15)

One can also effortlessly produce inequivalent backreacted T-folds following this strategy

of introducing surface holonomies.

Classical gauge invariants. We have generated backreacted geometric, twisted tori

and T-fold backgrounds. Since applying the Buscher rules transforms all the (gauge vari-

ant) objects determining these backgrounds (like the metric, and NSNS two-form) it is

natural to ask how the gauge invariant objects are mapped into one another under such a

transformation.

One route towards defining classical gauge invariant objects as measured in a

given background solution is the following. We consider a gauge invariant combination

O[g,B, . . . ] of the fields in the original geometric background (e.g. the Ricci scalar or the

three-form flux H(3) at a given point in space-time). We then apply T-duality to the object

in the sense that we rewrite the gauge invariant as a functional of the T-dual fields g̃, B̃

etcetera. Clearly, the dual will be a complicated expression in the T-dual variables, but by

T-duality, it will remain a gauge invariant object. The disadvantages of this formulation of

gauge invariant objects in T-folds are on the one hand that it leads to unwieldy expressions

and, more importantly, that it is only available when we have a geometric dual. We can

address these points by looking on the one hand for expressions that are invariant in form

under T-duality transformations. On the other hand and more importantly, we would like

to have an intrinsic definition of gauge invariants in T-folds that is independent of the

existence of a geometric dual. We are then looking for gauge invariants that are not only

invariant under coordinate transformations, but also under the T-duality transformations

that occur when we change patch in a T-fold. Such objects should be invariants not only

of geometric gauge transformations, but also of the T-duality group.

In the following, we want to give an example of how one can formulate a solution to

both problems in practice. Consider the moduli fields ρ and τ of the two-torus T 2
89 on which

we performed T-duality transformations in our first example. The T-dualities we consider

act by O(2, 2, Z) transformations on the pair of moduli. These include SL(2, Z)× SL(2, Z)

transformations, as well as the exchange of the two moduli. Thus, if we consider an

unordered pair of modular invariant j-functions of the two moduli:

(j(ρ), j(τ)) , (3.16)

then we have classical gauge invariants that are independent of the T-duality frame in

which we study the backgrounds. That addresses the first issue.

– 9 –
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Note however, that it also gives a technical solution to the second issue. If in a given

T-fold we change patch, we act by an O(2, 2, Z) transformation on the moduli fields, and

again the set of numbers is invariant, now under a change of coordinate patch. Thus, the

O(2, 2, Z) invariant that we constructed can be used to define gauge invariants in T-folds,

intrinsically. The generalization of this example to bigger T-duality or U-duality groups

should be clear.

After this digression on classical gauge invariants, let’s turn to a second example.

3.3 Example 2: localized flux

We can generalize the constant flux example, while improving our control on the gravita-

tional backreaction. We have already explained (via the measurement of Wilson surfaces)

that we only have true isometries in two directions of the three-torus. We can make further

use of this freedom to localize the NS5-brane source in the x7 direction. The harmonic

function is then of the form

h(x6, x7) =
N

8π
log
(

sinh2
(

πx6
)

+ sin2
(

πx7
))

(3.17)

and fulfills

∆h(x6, x7) = Nδ(x6)δZ(x7) , (3.18)

where δZ denotes the periodic delta-function. The harmonic function codes the backreac-

tion to N NS5-branes which sit at the point x6 = 0, x7 = 0 (and x7 is compact). In the

example of the linear harmonic function h the singularity was of co-dimension one, pro-

ducing a domain wall. The singularity is now of co-dimension two, so it is a vortex. More

precisely, it corresponds to six-dimensional objects spread on a two-torus, and localized

on R × S1.

We can measure the presence of the NS5-branes by measuring their magnetic charge

under the NSNS three-form H(3) by taking an integral over the H(3)-field around the point

x6 = x7 = 0:
∫

C×T89

H(3) =

∮

C

(

∂6hdx7 − ∂7hdx6
)

=

∫ +∞

−∞

dx6

∫ 1

0
dx7∆h = N , (3.19)

where C is the curve circling the vortex on the x6,7 cylinder. The equations of motion and

the curvature can be read off from the formulas in section 2. The H(3)-field varies over the

three-torus:

H(3) =
N

4

sin(2πx7)

cos(2πx7) − cosh(2πx6)
dx6 ∧ dx8 ∧ dx9 ,

−N

4

sinh(2πx6)

cos(2πx7) − cosh(2πx6)
dx7 ∧ dx8 ∧ dx9 . (3.20)

The T-duality transformation along x8 gives us (via the formulas of section 2) a background

with twisted torus topology:

ds2 = ds2
R5,1 + h

(

(

dx6
)2

+
(

dx7
)2

+
1

h2

(

dx8 − bdx9
)2

+
(

dx9
)2
)

(3.21)
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Figure 2: Far from the NS5-branes, the uniform and localized distributions on the three-torus

match.

with the function b given by

b =

∫ x7

0
∂x6hdx′7 = −

∫ x6

0
∂x7hdx′6 =

N

4π
arctan

(

tan(πx7)

tanh(πx6)

)

. (3.22)

Let us determine which branch of the arctangent function we should take. We can de-

termine this by noting that at infinity, the localized NS5-brane on the cylinder cannot be

distinguished from the circularly spread density of NS5-branes that we had before. Thus,

at large value of x6, the solution should agree with the uniform solution.

Therefore the asymptotics of b must be given by the following choice of branches:

b|x6=±∞ = ±Nx7

4
. (3.23)

Monodromy vortex. As we discussed in detail previously, far from the source we will

see it as a monodromy domain wall. However, we know that we should now be able to

localize the source more precisely. We are therefore lead to define an observable that gives a

more refined measurement of the geometric singularity (than the monodromy of the twisted

torus around the x7 cycle).

We know that the H(3)-flux in the original background is a derivative of the real

part of the Kähler modulus. By T-duality transformation the Kähler modulus is mapped

to a complex structure modulus. That suggests that we should be able to measure the

presence of a monodromy vortex in the derivative of the complex structure modulus. The

monodromy vortex characterizes a new kind of twisted torus geometry. Let’s see how this

works in practice. We denote the real part of the complex structure modulus τ1 = Re(τ).

Then we can compute the vortex monodromy as follows:

∮

C67

dτ1 =

∮

(

∂6τ1dx6 + ∂7τ1dx7
)

=

∮

(

∂7hdx6 − ∂6hdx7
)

= −N , (3.24)
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where we used that

τ1 = −b = −
∫ x7

0
dx′7h∂dx6 =

∫ x6

0
dx′6h∂dx7 . (3.25)

Remark. The monodromy vortex was discussed in a slightly different guise in [4], and it

is familiar from other contexts. For instance, it is akin to the monodromy in the dilaton-

axion field that is generated by the D7-brane in type IIB string theory. For that matter,

it is a phenomenon quite familiar from the backreaction due to any co-dimension two

object governed by a Laplace equation. More specifically, here we find a monodromy in

the complex structure which is different from a monodromy in the dilaton-axion. However,

in F-theory we can code the monodromy of the D7-brane in a monodromy of the complex

structure of an auxiliary two-torus. The difference is that here, the monodromy is in the

complex structure modulus of a two-torus that is part of the physical ten-dimensional space-

time. From our discussion it becomes manifest that the discussion of [4] of the monodromy

vortex pertains to a full supergravity solution, corresponding to NS5-branes spread on a

two-torus.

Doubly T-dual T-fold. We can also study how the NSNS flux is coded in the doubly

T-dual T-fold. Since the Kähler modulus ˜̃ρ of the doubly T-dual T-fold satisfies

˜̃ρ = −1

ρ
, (3.26)

where ρ is the Kähler modulus of the original (geometric) background, the magnetic charge

of the NS5-brane which we computed in equation (3.19) can be written as

N = −
∮

Re
1
˜̃ρ

. (3.27)

The charge we computed in this way is not the canonical NSNS charge associated to the

three-form flux H(3). This procedure provides an example of how an observable O can be

literally translated into a dual background, as we discussed previously.

Remark. We note that the NS5-brane spread on a two-torus only has better backre-

action properties than the uniform flux example. We only logarithmically differ from an

asymptotically flat background instead of linearly. As such, one can attempt to compact-

ify the space transverse to the NS5-branes by combining a sufficient number of individual

sources to restore the total curvature of a two-sphere. That was done in [4] by globally

gluing approximations to the local solutions presented here.

4. Non-geometric regions in configuration space

Until now we have discussed examples of T-folds which have a geometric dual. If we

take the point of view that in the path integral of string field theory (namely, second

quantized string theory) we should divide out by the full gauge group which includes not

only diffeomorphisms but also T-duality (or U-duality) transformations, then the points of
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configuration space that we considered up to now are automatically included in an integral

over geometric configurations.2

In this section we would like to study whether we can find points in the configuration

space of string field theory that have no geometric equivalent in their gauge orbit. There

are some constructions of such points in the literature, which includes half K3 manifolds

glued in a particular way [4], as well as asymmetric orbifold points [29]. We will discuss a

new such point in configuration space with distinctive features in the next section. In any

case, it is good to make those points more manifest, since it is in these new regions of the

configuration space of string theory that the construction of T-folds (or U-folds) becomes

most useful.

We want to show that other regions of configuration space exist that are not integrated

over when considering only geometric backgrounds. In a first step, we will not worry about

whether the point we construct is a solution to the equations of motion, since our main

goal is to show that we must integrate in an (off-shell) path integral over more than only

geometric backgrounds.

We first concentrate on the following subproblem: can we construct a point in config-

uration space that has no geometric U-dual. It is intuitively clear that such points exist.

When we glue patches via duality transformations, and then act on the U-fold with lo-

cal gauge transformations patch by patch, and global duality transformations, we will not

generically be able to trivialize all gluings.

To make this more concrete, let’s concentrate on T-folds, and T-duality transforma-

tions. Our construction will be as follows. We consider a two-torus fibration over a circle.

As we go around the circle (with coordinate x7), the two-torus can pick up a monodromy

M in the T-duality group. When we appropriately choose the monodromy, we demonstrate

that it cannot be T-dualized to a geometric monodromy. We can summarize the problem

at hand in the following diagram:

(

ρ, τ
)

x7→x7+1−−−−−−→ M ·
(

ρ, τ
)





y
D





y
D

D ·
(

ρ, τ
)

x7→x7+1−−−−−−→
(

D · M · D−1
)

· D ·
(

ρ, τ
)

.

(4.1)

We need to show that we can choose a monodromy M which is non-geometric such that

for any T-duality D the new monodromy D · M · D−1 is also non-geometric.

Firstly, we consider a monodromy M to be geometric if it factorizes on the Kähler and

complex structure modulus, and if it is moreover of the type T n for the Kähler modulus

(where T is the operator that shifts the Kähler modulus by one). In other words, the only

geometric monodromies for the Kähler modulus are shifts by an integer n. For the complex

structure any SL(2, Z) transformation is an ordinary (geometric) global diffeomorphism.

We note therefore that a Kähler structure monodromy is of parabolic type when geometric.

When we conjugate the geometric monodromy, we will always remain with a parabolic

2For the sake of simplicity we ignore the exchange of for instance type IIA with IIB string theory under

T-duality. The reader can imagine that we discuss bosonic string theory.
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monodromy. We also recall that a T-duality transformation can act to exchange Kähler

and complex structure modulus. To avoid geometrization of the model via the transport

of the non-geometric Kähler monodromy to a geometric complex structure monodromy,

we must also demand that the complex structure monodromy is not of parabolic type. (In

this discussion we have excluded the special case of a constant modulus which lies at the

fixed point of a non-trivial monodromy.)

It is therefore sufficient to choose a model with non-parabolic monodromies for both

the Kähler and the complex structure modulus in order to have a model which cannot be

T-dualized to a geometric background. Such a model is a point in a new non-geometric

region of configuration space.

Many explicit examples can be constructed (see e.g. [30]). We give one example.

Consider a model with monodromies

ρ(x7 + 1) = S · ρ(x7) = − 1

ρ(x7)
,

τ(x7 + 1) = S · τ(x7) = − 1

τ(x7)
. (4.2)

A possible realization for the ρ-modulus would be of the following kind. Let

P1 = {x7|0 < x7 < 1} and P2 =

{

x7

∣

∣

∣

∣

1

2
< x7 <

3

2

}

be an open covering of the base circle S1 and let

A = (0,
1

2
) and B = (

1

2
, 1)

be the intersection of the two patches U1 ∩ U2. The local trivialisation φ1 and φ2 on the

patches P1,2 are given by

φ−1
1 (u) = (x7, t) and φ−1

2 (u) = (x7, t)

for u a coordinate on the patch and x7 ∈ A and t ∈ T 2. The transition function t12 on

the part A of the intersection of patches is the identity map. On the other part B of the

intersection the transition function is

t21 : φ−1
1 (u) = (x7, t), φ−1

2 = (x7, S · t) ,

where S is a generator of the T-duality group and maps coordinates of a torus with volume

Im(ρ) to coordinates of the torus with volume 1
Im(ρ) .

Therefore, it is not too hard to find regions in configuration space that are truly non-

geometric. However, in a second step, we must take into account the vacuum selection

done by the equations governing string backgrounds. In particular, when we choose an

elliptic monodromy, as we did above and we assume that the moduli only depend on the

compactification direction x7, then the moduli will tend to relax to constant values, and

in particular, for an elliptic monodromy, the moduli relax to the fixed point of the elliptic

monodromy matrix. At these fixed points, then, the elliptic monodromy becomes equivalent
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Figure 3: We draw an example of an evolving modulus with elliptic monodromy.

to a trivial monodromy (since the modulus is constant). The backgrounds corresponding

to these moduli have an enhanced discrete symmetry [6, 30]. The discrete symmetry can

then be used to (asymmetrically) orbifold the background to make it non-geometric [29].

Note also that once a modulus stabilizes at its fixed point value, it can be interpreted

as a modulus with monodromy, or a modulus with trivial monodromy. In other words,

those are points in moduli space were a T-fold topology change could occur. The dif-

ference between the two interpretations lies in the spectrum of allowed fluctuations. It

would be interesting to see whether one can argue for such a T-fold monodromy/topology

change transition.

Finally, when we consider constant moduli with hyperbolic and parabolic Scherk-

Schwarz ansatz, then we find that these do not provide us with fixed points — the potentials

(without gradient terms) exhibit runaway behavior [6].

We can now learn an important lesson from the study of the doubly T-dual to the

NS5-brane solution. It provides us with a background with parabolic monodromy, with

a modulus that varies over space. Moreover, the solution is stable (and preserves sixteen

supercharges). Therefore we are lead to search for new non-geometric backgrounds that

allow for a modulus that varies over space, in order to find new non-geometric backgrounds

that lie outside the reach of attractive fixed points.

5. A new space-dependent solution

The solutions we studied in detail in the first sections, have a duality twist from the

parabolic conjugacy class of SL(2, Z). From the analysis of [6], we know that when we

reduce the supergravity equations of motion to seven dimensions after reducing on T 2 and

additionally on a circle with parabolic or hyperbolic duality twists, then there exists no

stable constant minimum in the resulting potential.

Since we have a concrete solution, namely the doubly T-dual of NS5-brane solutions,

which is stable (since it is supersymmetric) and which has a parabolic duality twist, it is

interesting to analyze how we can generalize the analysis of [6] in order to include that

type of solution. In doing so, we may learn how to construct interesting solutions of a
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different type altogether. At the very least, we will find an alternative to the relaxation of

the moduli to constant fixed point values.

5.1 The equations of motion in seven dimensions

In this subsection we briefly remind the reader of how dimensional reduction with duality

twists proceeds (see e.g. [31, 32]). We concentrate on the part of the eight-dimensional

Lagrangian that contains the complex and Kähler moduli describing the geometry of the

two-torus on which we compactify. Additionally, we recall that Scherk and Schwarz consid-

ered compactifications with fields which depend on the compactified directions [1]. We will

reduce the eight-dimensional action further (along the x7-direction) to seven dimensions us-

ing such a Scherk-Schwarz reduction. The dependency of the fields on the x7 direction will

be such that it drops out of the eight-dimensional Lagrangian, rendering a further dimen-

sional reduction straightforward. The consistency of the reduction scheme was understood

in [1]. Concretely, the ten-dimensional fields do not depend on x8 and x9 directions along

the two-torus T 2, and after reducing we have (amongst others) two additional scalar fields,

namely the Kähler modulus ρ̂ and the complex structure modulus τ̂ of the T 2-fiber. In the

reduced eight-dimensional Lagrangian they transform under SL(2, Z)ρ̂ × SL(2, Z)τ̂ . Next,

one Scherk-Schwarz reduces the eight-dimensional fields along the angular x7 direction.

The relevant terms in the eight-dimensional action for the moduli are the SL(2, R)

invariant SL(2, R)/U(1) coset actions:

S
(8)
mod =

∫

d8x
√

ge−2φ(8)

(

−∂mρ̂∂m ˆ̄ρ

ρ̂2
2

− ∂mτ̂ ∂m ˆ̄τ

τ̂2
2

)

. (5.1)

The dilatons in eight and ten dimensions are related by the formula

φ(8) = φ(10) − 1

4
log
(

det gT 2
89

)

. (5.2)

We can rewrite the action in the form

S
(8)
mod =

1

2

∫

d8x
√

ge−2φ(8)
Tr
(

∂mĤ−1∂mĤ
)

, (5.3)

where we take the moduli field Ĥ to have the form:

Ĥ =
1

ρ̂2

(

1 ρ̂1

ρ̂2 |ρ̂|2

)

⊕ 1

τ̂2

(

1 τ̂1

τ̂2 |τ̂ |2

)

. (5.4)

We consider a Scherk-Schwarz ansatz for the moduli that guarantees that the x7 depen-

dency will drop out in the Lagrangian:

Ĥ(x7) = MT (x7)HM(x7) = eMT x7
HeMx7

. (5.5)

The unhatted field H no longer depends on the angular coordinates x7. The exponential

factors give a monodromy to the moduli of the T 2
89 fiber. Inserting this ansatz into the

action (5.3) we obtain the seven-dimensional reduced action:
∫

d7x

√

g(7)e−2φ(7)
Tr

(

1

2
∂mH−1∂mH − g77

(

M2 + MT HMH−1
)

)

(5.6)
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with m = 0, . . . , 6 and φ(7) = φ(8) − 1
4 log g77. In the following we further reduce our ansatz

and assume that there is no non-trivial monodromy in the complex structure modulus. We

consider only the T-duality transformation and monodromies that act upon the Kähler

modulus only. The action is then classically invariant under SL(2, R) duality transforma-

tions. These act on the matrices H = 1
ρ2

(

1 ρ1

ρ1 |ρ|2

)

and M as follows:

H −→ AT HA and M −→ A−1HA , (5.7)

where A is an SL(2, R) matrix. We now recall the action for monodromy matrices m

in various conjugacy classes of SL(2, R). For the monodromy matrix from the parabolic

conjugacy class

Mp =

(

0 m

0 0

)

we obtain the seven-dimensional action:

S
(p)
mod = −

∫

d7x

√

g(7)e−2φ(7)

(

m2g77 + ∂mρ∂mρ̄

ρ2
2

)

. (5.8)

For the mass matrix from the elliptic conjugacy class

Me =

(

0 m

−m 0

)

we obtain

S
(e)
mod = −

∫

d7x

√

g(7)e−2φ(7)

(

m2g77|1 + ρ2|2 + ∂mρ∂mρ̄

ρ2
2

)

, (5.9)

and for the mass matrix from the hyperbolic conjugacy class

Mh =

(

m 0

0 −m

)

(5.10)

we obtain

S
(h)
mod = −

∫

d7x

√

g(7)e−2φ(7)

(

4m2g77|ρ|2 + ∂mρ∂mρ̄

ρ2
2

)

. (5.11)

In the following we further assume that the Kähler modulus is constant along the x0, . . . , x5-

directions. In contrast to [6], we allow for a dependence of the moduli on the x6-direction.

As a result, when analyzing solutions to the equations of motion we not only take into

account the potential, but also the gradient terms. The equations of motions which we
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derive from the above actions are

(ρ − ρ̄)

(

∂m∂mρ̄ +

(

√

g(7)e−2φ(7)

)−1

∂m

(

√

g(7)e−2φ(7)

)

∂mρ̄

)

+ 2∂mρ̄∂mρ̄

+2m2g77 = 0 ,

(ρ − ρ̄)

(

∂m∂mρ̄ +

(

√

g(7)e−2φ(7)

)−1

∂m

(

√

g(7)e−2φ(7)

)

∂mρ̄

)

+ 2∂mρ̄∂mρ̄

+2m2g77
(

1 + ρ̄2
) (

1 + |ρ|2
)

= 0 ,

(ρ − ρ̄)

(

∂m∂mρ̄ +

(

√

g(7)e−2φ(7)

)−1

∂m

(

√

g(7)e−2φ(7)

)

∂mρ̄

)

+ 2∂mρ̄∂mρ̄

+4m2g77ρ̄(ρ + ρ̄) = 0

(5.12)

for the parabolic, elliptic and hyperbolic conjugacy classes respectively.

5.2 A space-dependent modulus with parabolic monodromy

We have tuned our ansatz such that the doubly T-dual solution of section 3.1 falls inside

the class. We can thus explicitly check on that example the equations of motion, and verify

that indeed one finds a spatial dependence of the modulus that gives rise to the desired

monodromy. The SL(2, R) invariant gradient terms cancel out the (otherwise runaway)

potential terms to provide new solutions to the equations of motion. Explicitly, the Kähler

modulus of the solution is given by

ρ̂1 = − Nx7

(Nx6 + c)2 + (Nx7)2
, ρ̂2 =

Nx6 + c

(Nx6 + c)2 + (Nx7)2
. (5.13)

The monodromy which we read of from its behavior along the angular x7-direction is

M̃ =

(

0 0

−N 0

)

= A−1

(

0 N

0 0

)

A with A =

(

0 −1

1 0

)

. (5.14)

This matches with the Scherk-Schwarz ansatz:

1

ρ̂2

(

1 ρ̂1

ρ̂1 |ρ̂|2

)

= AT e

0

@

0 0

N 0

1

Ax7 (
1

Nx6+c
0

0 Nx6 + c

)

e

0

@

0 N

0 0

1

Ax7

A . (5.15)

Let’s understand why this provides a solution to the equations of motion. In the background

at hand, we have that φ(8) is constant, and that the metric in R
5,1 is trivial. Moreover

g66 = g77 such that in the x6 dependent gradient term, the non-trivial mixing with the

metric drops out completely. If we then take the real part of the Kähler modulus ρ to be

zero and keep the imaginary part ρ2 to have a generic x6 dependence, than the equation

of motion (5.12) simply becomes

ρ2∂
2
6ρ2 − (∂6ρ2)

2 + m2 = 0 . (5.16)
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The linear function ρ2 = mx6 + c (with m = N) indeed solves the equation of motion of

the seven-dimensional action. We have learned in this example that the gradient terms can

compensate for runaway behavior in the potential for a parabolic monodromy. Decoupling

of the equations of motion for the Kähler modulus follows from a specific metric ansatz.

5.3 On the existence or not of a geometric T-dual

Both a parabolic and a hyperbolic monodromy matrix do not have a fixed point. They

necessarily give rise to non-constant moduli fields. The parabolic monodromy gave rise to

a solution that is T-dual to a geometry with flux. One can wonder whether one can find

solutions with hyperbolic monodromy, especially in the light of the fact that we argued

previously that those cannot be T-dual to geometric backgrounds (when we restrict the

action of the T-duality group to be SL(2, R) only). Before we attempt to find such a

solution, we revisit the analysis of the existence of a geometric dual in the language of the

lower-dimensional field theory.

The duality transformation behavior of the moduli field Ĥ can be used to confirm our

discussion about existence/non-existence of the geometric T-dual. We take the working

definition that a globally non-geometric background implies that the volume of the T 2-

fibration is a non-periodic function of the base-coordinate x7. For a given globally non-

geometric background a test of the existence of the geometric T-dual works as follows.

For a given solution one writes down the matrix

Ĥρ =
1

ρ̂2(x7)

(

1 ρ̂1(x
7)

ρ̂1(x
7) |ρ̂(x7)|2

)

(5.17)

where ρ̂1 gives the value of the B8,9 component and ρ̂2 the volume in the given T -duality

frame. A conjugation of the monodromy matrix by a general SL(2, R)-matrix will generate

an equivalent background but with a different expression for ρ̂2 (see equation (5.7)). If it

possible to find such a SL(2, R)-matrix that the new ρ̂2 is x7-independent then a geometric

T-dual does exist. One can analyze these conditions generically for the various types of

SL(2, R) conjugacy classes, and we find the following results:

• There is no SL(2, R) transformation that transforms away a hyperbolic monodromy

along the angular x7 direction.

• For the elliptic conjugacy class, the dependence on the angular coordinate x7 is non-

trivial unless the modulus is at the fixed point of the monodromy.

• For a parabolic monodromy, there is a duality frame in which the modulus is inde-

pendent of the angular direction x7.

5.4 A space-dependent modulus with hyperbolic twist

We now turn to finding a solution to the equations of motion (5.12) in the case where

we have a hyperbolic duality twist. Equipped with the equation (5.12) we can guess a

ten-dimensional solution with duality twist coming from the hyperbolic conjugacy class.

When we have vanishing B-field (and therefore a purely imaginary Kähler modulus ρ) the
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equation (5.12) is solved by a constant ρ = iC. That gives rise to the two-torus geometry

coded in

Ĥ =
1

ρ̂2

(

1 ρ̂1

ρ̂1 |ρ̂|2

)

= MT

(

1
ρ2

0

0 ρ2

)

M with M = e

0

@

m 0

0 −m

1

Ax7

(5.18)

or in other words

ds2
89 = Ce−2mx7

(

(

dx8
)2

+
(

dx9
)2
)

, B(2) = 0 . (5.19)

Our ansatz for the other metric components is based on the fact that we only expect an

x6 dependence of the other fields and metric components, and we moreover are inspired by

the relations between these fields in the parabolic solution. Thus, we make the ansatz that

φ(8) only depends on x6, and that g66 = g77 only depends on the x6 coordinate as well. We

moreover take g67 = 0 = B(2). We summarize these proposals in the expression:

ds2 = ds2
R1,5

+ h(x6)
(

(

dx6
)2

+
(

dx7
)2
)

+ ds2
89 ,

φ(10) =
1

2
log(Ce−2mx7

) + φ(8)(x6) . (5.20)

We then plug this ansatz directly into the ten-dimensional equations of motion, and find

with some effort that they are solved by

ds2 = ds2
R1,5 + h

(

(

dx6
)2

+
(

dx7
)2
)

+ Ce−2mx7
(

(

dx8
)2

+
(

dx9
)2
)

,

h =
B

2x6 + A
e−

1
4
m2(2x6+A)2 ,

φ = φ0 +
1

2
log

(

Ce−2mx7

2x6 + A

)

,

B(2) = 0 . (5.21)

with A,B,C, φ0 constants.

Let us analyze the solution in slightly more detail. We note that for m = 0 we obtain

the metric and dilaton

ds2 = ds2
R1,5 +

B

2x6 + A

(

(

dx6
)2

+
(

dx7
)2
)

+ C
(

(

dx8
)2

+
(

dx9
)2
)

,

φ = φ0 +
1

2
log

(

C

2x6 + A

)

, (5.22)

which in the new coordinate system z =
√

B(A + 2x6) reduces to:

ds2 = ds2
R1,5 + dz2 +

B2

z2

(

dx7
)2

+ C
(

(

dx8
)2

+
(

dx9
)2
)

φ = φ0 +
1

2
log

(

BC

z2

)

, eφ =
eφ0

√
BC

z
. (5.23)
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A T-duality along the x7-direction

ds2 = ds2
R1,5 + dz2 +

z2

B2

(

dx7
)2

+ C
(

(

dx8
)2

+
(

dx9
)2
)

eφ = eφ0

√

C

B
(5.24)

shows that the metric without monodromy is T-dual to an (almost everywhere) flat back-

ground. If we wish to avoid a conical singularity at z = 0, we must tune the parameter B

appropriately.

For a non-zero hyperbolic monodromy, our solution is non-trivial. It cannot be brought

into a geometric frame with an SL(2, R) duality transformation, and the curvatures are

non-trivial. It has a certain domain of validity in which both the curvatures and the string

coupling constant are small. The singularity that the original solution exhibits is of a

type T-dual to a flat or conical space. It would be good to check the properties of these

solutions further, and in particular to study their stability through a fluctuation analysis

that properly takes into account the T-fold boundary conditions.

Note also that we have exhibited the solution in a form which is appropriate for hy-

perbolic monodromies in the full SL(2, R) group. It is straightforward to bring it into a

form suitable for all SL(2, Z)-valued twists with |Tr(M)| > 2. These are of two types of

hyperbolic SL(2, Z) conjugacy classes, namely the generic ones with representatives:

M =

(

n 1

−1 0

)

(5.25)

where n is an integer with absolute value larger than three, and sporadic conjugacy classes

that one can enumerate. Let us give us an example of how to construct a solution with

such a monodromy in practice. Consider for example a solution with sporadic monodromy

M(8) =

(

1 2

3 7

)

. We will obtain a classically equivalent solution if we set m = log(4−
√

15)

in our solution. Additionally, we can generate infinitely many solutions with this conjugacy

class by SL(2, R)-conjugation of the monodromy matrix, and in particular there are many

frames in which the monodromy is indeed SL(2, Z) valued. Note that we can also use

duality rotations to generate solutions with hyperbolic monodromy and non-trivial NSNS

three-form H(3). In summary, we determined a new solution to the equations of motion

which has non-trivial varying Kähler modulus that exhibits a hyperbolic monodromy.

To motivate the subsequent subsection, we note that we could turn a background of

this form in type IIA/B string theory into a background with hyperbolic monodromy in

the complex structure modulus of IIB/A string theory, thus rendering the monodromy

geometric. We use a T-duality transformation outside the SL(2, Z)ρ̂ duality group to

achieve this. It should be clear from our previous discussions that the way to avoid such

geometrization in a mirror geometry, we need to introduce a non-trivial (say hyperbolic)

monodromy for the complex structure as well. Can we find a supergravity solution with a

hyperbolic monodromy in both the Kähler and complex structure ?
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5.5 Let’s twist again

Indeed, we found a supergravity solution with a non-trivial monodromy in both the Kähler

and the complex structure modulus. The underlying reason for the simplicity of the gen-

eralization is that the monodromies of both Kähler and complex structure modulus enter

the dynamics of the other metric components and the dilaton in a similar fashion. The

solution for the metric, dilaton and NSNS two-form B(2) is as follows:

ds2 = ds2
R1,5 + h

(

(

dx6
)2

+
(

dx7
)2
)

+ Ce−2m1x7 (

dx8
)2

+ Ce−2m2x7 (

dx9
)2

,

h =
B

2x6 + A
e−

(m2
1+m2

2)(2x6+A)2

8

φ = φ0 +
1

2
log

(

Ce−(m1+m2)x7

2x6 + A

)

,

B(2) = 0 . (5.26)

From these one learns immediately that the Kähler and complex structure modulus are

given by:

ρ̂ = B89 + i
√

gT 2
89

= iCe−(m1+m2)x7
, τ̂ =

g89

g88
+ i

√

gT 2
89

g88
= ie(m1−m2)x7

. (5.27)

Rewriting the moduli fields using the Ĥ-matrix allows us to identify the type of monodromy

for the above solution.

Ĥρ =

(

C−1e(m1+m2)x7
0

0 Ce−(m1+m2)x7

)

= MT
ρ

(

1
C 0

0 C

)

Mρ ,

Ĥτ =

(

e(m2−m1)x7
0

0 e(m1−m2)x7

)

= MT
τ

(

1 0

0 1

)

Mτ (5.28)

with

Mρ = e

0

@

m1+m2
2 0

0 −m1+m2
2

1

Ax7

, Mτ = e

0

@

m2−m1
2 0

0 m1−m2
2

1

Ax7

. (5.29)

For m1 6= m2 and m1 6= −m2 we have hyperbolic monodromies in both sectors. The

solution is genuinely non-geometric under all O(2, 2, Z) duality transformations. We can

tune the two hyperbolic parameters and use the O(2, 2, R) duality group to construct the

solutions for which the hyperbolic monodromies take values in O(2, 2, Z), as we illustrated

in the previous subsection.

6. Conclusion

We have given the gravitational backreaction of T-folds T-dual to purely NSNS background.

It transpires that twisted tori and T-folds correspond to new types of gravitational singu-

larities which are resolved via T-duality and known resolutions. We extended the analysis

to cases with Wilson surfaces and flux on a three-torus localized in one direction. The
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concept of monodromy domain walls and vortices is useful to describe the microscopic

origin of twisted tori. We showed for the importance of including the full backreaction of

proposed T-folds in order to judge whether they can be defined in an asymptotically flat

string theory.

Moreover, we argued that interesting non-trivial non-geometric backgrounds exist in

which we allow the moduli to vary over non-compact space. In fact, the doubly T-dual

to a NS5-brane is an example of such a background which is geometrizable. We found a

supergravity solution with hyperbolic monodromies which is not equivalent to a geometric

one. It will be interesting to further analyze the properties of the solution, and in particular

to analyze its stability through a fluctuation analysis that properly takes into account the

T-fold boundary conditions.

Thus we showed with an explicit example that one can find regions in the configuration

space of second quantized string theory that are non-geometric. It would be good to study

these regions further and to estimate to what degree their contributions to a second quan-

tized string theory path integral are important. We expect that they may be of importance

for instance in cosmological big crunch big bang scenarios and in string phenomenology.
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